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Mark Kac's theorem on the mean recurrence time in a stationary stochastic 
process in discrete time with discrete states is taken as the starting point for a 
series of variations, most of which are formulated in terms of 0-1 processes. 
Whereas the original theorem deals with the mean recurrence time of a given 
state under the condition that the state is realized at time 0, this condition is 
dropped in part of the variations; two others refer to the variance of the 
recurrence time and two to the Poincar6 cycle of a dynamical system. Most 
variations consist in inequalities and formal identities for the mean first-arrival 
time and subsequent recurrence times for the given state. 
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INTRODUCTORY NOTES 

This paper  is devoted to a subject to which Mark  Kac  made a fundamenta l  

con t r ibu t ion  in his 1947 paper  "On  the no t ion  of recurrence in discrete 

stochastic processes. ''(1) In  that paper, Kac considered a s ta t ionary 
stochastic process in discrete time with discrete states. He derived a simple, 

generally valid expression for the mean  recurrence time of a given state 
under  the condi t ion  that  this state is realized at time 0. In  the following we 
shall discuss several var iat ions on this classic theme. Most  of these 

variat ions are new; some have appeared scattered in the literature, but  are 

presented here for the sake of composi t ion,  with proofs adapted to a 
uniform treatment.  In  part  of the variat ions the condi t ion  on the initial  
state is dropped;  two others refer to the variance rather  than  the expec- 

ta t ion of the recurrence time. Kac  also gave in his paper  an appl icat ion of 
his theorem to the Poincar6 cycle of a dynamica l  system. We shall also 
briefly touch upon  this subject. 
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812 Kasteleyn 

Since in the following, as in Ref. 1, the only events of interest are 
defined in terms of the occurrence or nonoccurrence of one single state, 
there is no loss of generality in restricting the discussion to two-state 
processes with states labeled, say, 0 and 1, where 1 will be the selected 
state. 

Let, therefore, X =  (Xt)~=o be a stationary 0-1 process. The probability 
measure describing the process will be denoted by P, the expectation and 
variance with respect to P of a random variable Y by ( Y )  and Var(Y), 
respectively, the probability of the event Xo = x0, X1 = xl ,..., X,, = xn, with 
x~ e {0, 1 }, 0 ~<j~< n, by P ( x o x l " " x , )  with the following conventions: 0 '~' 
will represent a sequence of m (consecutive) O's, 0 ~ an infinite sequence of 
O's, y an arbitrary finite sequence of O's and l's, and q the frequently 
occurring probability P(1); we assume q >  O. The stationary process X, or 
the measure P, is called cyclic with repeating unit x o x l . . . x  . if the only 
sequences that can occur with positive probability are s-fold repetitions of 
the unit, (XoXl ""xn)  s, s<~ o% and uninterrupted subsequences of such a 
sequence. 

The analysis concentrates on the consecutive (random) arrival times 
(passage times) irk for the state 1 (i.e., T1 :=min{t~>0: X , =  1}; Tk := 
min{t > irk_ 1: X, = 1 }, k 1> 2), more in particular on T~ and on the differen- 
ces n k := Tk+ ~ -- Tk, the recurrence times of the state 1; T~ will be denoted 
alternatively by no. 

Use will be made of a few simple identities, which are consequences of 
the following consistency relations for probabilities: 

P(Oy) + P( ly)  = P(yO) + P(y l  ) = P(y)  

where, as in what follows, stationarity is essential. The identities are: 

(i) P(O"I)=P(IO m) 

which follows from the fact that both sides are equal to p(om) - P(O m+ ~); 

(ii) P ( yO~)=O if y contains at least one 1 

because then 

P(yO ~ ) ~ P(IO ~ ) = P(O ~) - P(O0 ~ ) = 0 

[note that P(O ~) need not be zero];  

(iii) lira P(O"~y)= 0 if y contains at least one 1 
m ~ c o  

because then 

lira p(Omy)<<, lim p(Oml)=P(IO~)=O 
m ~ o o  m ~  

by (i) and (ii); 
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(iv) ~ p(oml)+P(O~)=l  
m = O  

obtained by iterating the consistency relations; finally, three identities that 
require a somewhat less trivial proof: 

m = l  

(vi) 
m = l  

mrp(yOm-ll) 

= ~ A(mr)[P(yOm)--P(YO~)], 
m = O  

mrP(lO m ly) 

r~>l 

= ~ A(m~)[p(omy) - lim P(Ogy)], r>~l 
m = O  N ~ o o  

(vii) ~ P(lOm-ly)=P(y)  - lira P(O~'~) 
N ~  m = l  

where A(m r) := (m + 1)r--m r. The identity (v) is derived as follows. For 
M e N  

• mrP(yOm-ll) 
m = l  

M N 

2 rn"P(yOm 11) + lim ~ MrP(yOm-ll) 
m = [  N ~ C C m = g + l  

M 

= ~ m"[P(yO m ~)-P(y0m)] 
m = l  

N 

+ lim 
N ~ 3  m = M + l  

M - 1  

2 
m = O  

M - - 1  

Z 
m = O  

M~[ P(yOm-1) - p(yom) ] 

z ~ ( m  r) P ( y O  m)  - -  M r l i m  P(yO N) 
N ~ ~,~ 

J(mr)[P(yO m) -- P ( y 0 ~ ) ]  

Since the inequality holds for any M, we have 

mrP(yO"-Xl)>~ ~, A(mr)[P(yOm)-P(yO~)] 
m = l  m = 0  

822/46/5-6-2 
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If the right-hand side is infinite, so is the left-hand side. On the other hand, 

~ mrP(yO m 11) 
m = l  

N 

= lim ~ mr[P(yOm--1)--P(yOm)] 
N ~ c x 3  

m = l  

= lim A(m ~) P(yO m) - Nrp(yO u 
N ~ o c ~  - m = 0  

~ A(mr)[P(yOm)-P(YO~)] 
m = O  

where the inequality follows from P(yOU)>~P(yO~). From the two 
inequalities for ZmmrP(yOm--ll), the identity (v) follows. The "mirror 
image" of the derivation yields (vi) and a minor adaptation to the case 
r = 0 yields identity (vii). 

Since P(10 ~) =0 ,  the recurrence times nk are defined for almost all 
realizations of X with X 0 = 1. For  k = 1 this is the content of Theorem 1 of 
Ref. 1. Theorem 2 is the one that will serve as the theme for the variations 
to follow; we present it in an adapted form. 

T H E M E  

X oo For a stationary 0-1 process ( t)t=o with P(0 ~) = 0  the expectation of 
the first-recurrence time n l under the condition Xo = t is 

(n l jXo=l )=  q i (1) 

ProoL Applying the identity (vi) with y = 1 and r = 1 and using (iii) 
and (iv) and the assumption P(O~)=O, one obtains 

(n l lXo=l )=q  -1 ~ mP(lO m 11) 
m = l  

= q - 1  '~ p(oml) 
m = O  

= q  I [ 1 - P ( 0 ~ ) ]  = q  --1 

This proof, though based on the same consistency relations as Kac's proof, 
differs from the latter in that no explicit discussion of the asymptotic 
behavior for m ~ oo of re[P(0 m) - P ( 0  'n+ 1)] is required (see Ref. 1; cf. also 
Ref. 2). 
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VARIATION I 

For an arbitrary stationary 0-1 process 

(nklXo = 1) = q - l [ 1 - P ( 0 ~ ) ]  for all k~> 1 (2) 

For k = 1 this variation is nearly trivial, the proof being identical to that of 
the theme, except for the last step, which is not valid if P(0 ~176 #0.  Kac's 
theorem was presented in this form (in a broader context) by Blum and 
Rosenblatt. (2) It was later encountered again in an analysis of random 
walks on stochastically black-white colored lattices. (3) 

The equality of all (nklX0 = 1), k/> 1 (and also that of all higher 
moments of the nk) follows from the fact that under the given condition the 
nk, k ~> 1, are identically distributed. To prove this fact, we apply (vii), with 
m=nl, y=lO n2 l10n3-11' ' '10nk-ll  (k~>2),and (iii): 

P(nk>nlXo=l)=q -1 ~ ~ P(10n~-ly) 
nl,...,nk 1 - - i  n k = n +  l 

=q-' ~, ~ [P(y)- lim p(OXy)] 
N ~ o o  

n 2 , . , . , n k -  1 = 1 n k ~ t t + l  

= q  I ~ ~ P(IO n* '1" '10~*- ' -11)  
n t , . . . , r t k _ 2  = 1 n k _ l = n + l  

[by relabeling] 

=P(nk_l>nlXo=l) for anyn~>0 (3) 

Iteration of (3) yields the desired property. Note that the n~, need not be 
mutually independent. An extension of the argument shows, however, that 
the process (n~)~= 1 conditioned on Xo = l is stationary. Another relation, 
to be used in Variation XIV, is also easily derived: 

P(nl > n l X o =  1)=q-lp(no=n) 
If the condition Xo = 1 is relaxed to X-~0 ~ (i.e., there is at least one t 

such that X, = 1), the mean recurrence times need not be equal to q-1 any 
more, nor are they independent of k in general. Examples show that the 
(nk)  may vary with k in many different ways. The next variation shows, 
however, that there are bounds to their behavior. Instead of conditioning 
on X #  0 ~~ we assume P(0 ~176 = 0. By (ii), the nk are again well-defined ran- 
dom variables. 

VARIATION II 

For a stationary 0-1 process with P(0 ~~ = 0 

Ifnk)--q 11 ~< 1 + 2 ( n o ) - - q  -1 (4) 
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To prove Eq. (4), we first derive the following identities [cf. Ref. 3, Eqs. 
(2.17) and (2.18)] 

(nZ[Xo= 1) = q - l ( 1  + 2 ( n o ) )  (5) 

(nlnk+~lXo=l)=q ~(nk), k>~l (6) 

Applying (vi), with y = 1, r = 2, and using (iii) and (iv), one finds 

(n2lXo=l)=q -~ ~ m2P(lOm-~l) 
m = l  

=q-~ ~ (l+2m) P(Oml) 
m = O  

=q-~(1  + 2 ( n o ) )  

The proof of (6) is similar. We next use the fact that V a r (n l+n k +! ]  
Xo = 1)~>0 and Var(nl-nk+ltXo = 1)~>0. Using (1), (3), (5), and (6), we 

find 

0~< (n~lXo = 1) + (n~+ llXo = 1> 

++_2(nlnk + llXo = 1>-- (n1_+ nk+ ll Xo = 1) 2 

=q ~[2(l+2(no))+__2(nk)]_(q-~+q ~)2 

o r  

- 1 - - 2 ( n o )  + q - ~  ~< ( n k ) - q - l <  1 + 2 ( n o ) - q - ~  (7) 

Let us consider the case k = 1 and ask whether the lower and upper 
bounds for ( n l )  can be attained; for arbitrary k the argument is similar, 
but lengthy. The left-hand inequality reduces to an equality iff Var(nl + n21 
X0 = 1 ) =0 ,  i.e., iff there is jE  N such that nl +n2=j a.s. It is easily seen 
that this implies that P is cyclic with repeating unit 0 i - l l 0 J - i - ~ l ,  with 
1 ~< i ~< j -  1, or a convex combination of such measures with different i and 
the same j. This implies q = 2j-1; therefore equality cannot hold for other 
values of q. 

The right-hand inequality (which was first derived in Ref. 3) reduces to 
an equality iff Var(n~-n21Xo=l)=O, i.e., iff there is j ~ Z  such that 
n~-n2=j almost surely. Since n l  and n2 have identical distributions, j 
must be zero, so that, with probability one, nl and n2 (and hence all nk, 
k ~> 1) are equal. This means that P is cyclic with repeating unit 0n-~l,  
n >~ 1, or a convex combination of such measures with different n. Since any 
value of q in (0, 1 ] can always be written as a convex combination of num- 
bers of the form n -1, the upper bound for (n~)  can be attained for all q. 
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Observe that the lower bound in (7) is larger than the trivial lower 
bound 1 only i f - l - 2 ( n o ) + 2 q  1>1, i.e., i f ( n o ) < q  1 -1 .  

The inequality (4) leads us to ask what can be said about (no) ,  the 
mean first-arrival time for the state 1. A first answer to this question is 
given in the next variation. 

V A R I A T I O N  I I I  

For a stationary 0-1 process with P ( 0 ~ ) =  0 

<no) >/(1 - q)/2q (8) 

The equality sign holds iff q = j ~ (j  ~ N) and P is cyclic with repeating 
unit 0 j -  11. 

This inequality follows from Var(n~ [ Xo = 1)/> 0 together with (1) and 
(5) (cf. Ref. 3). The equality sign holds iff there i s j r  ~ such that n~ = j  a.s., 
which implies that P is cyclic with repeating unit 0 j -  ~ 1 and, hence, q = j 1 

For the mean first-recurrence time <n~ > there is also a lower bound in 
terms of q: 

V A R I A T I O N  I V  

For a stationary 0-1 process with P(0 ~) = 0 

(nl)>~2-q 

The equality sign holds iff P(010) = 0. 

Indeed, we have 

( n l )  = P(1)(nl  IX o= 1) + P(O)(n~ IX o= O) 

=q'q-a + P(O)(n~lXo=O) 

>~ 1 + P(0)  = 2 - q  

(9) 

since nl/> 1. For the equality sign to hold, (nl  [Xo = 0 )  must be equal to 1. 
This is true iff the first ! following a sequence of one or more O's is almost 
surely followed by another 1, i.e., iff P(010) = 0. 

The inequality (9) holds also for (nk) ,  k >  1, but the condition for 
equality is more complicated. 

Let us return to no. Observe that it is a first-arrival time, not a 
recurrence time, and therefore cannot be expected to behave similarly to 
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the nk, k~> 1. In order to derive a lower bound for (no )  in terms of q 
which, like the one found for @1 ), can be attained for any value of q, we 
will need the following identity. 

VARIATION V 

For a stationary 0-1 process with P(0 ~) = 0 

(no)  = ~ P(O m) (10) 
m - - 1  

The identity holds both if the sum on the right-hand side is finite and if it is 
infinite. 

The proof is based on (v), with y=O,  r = 1: 

<no) = ~ mP(Oml) = ~, [ p ( 0 m + I ) - P ( 0 ~ 1 7 6  ~ P(O ~) 
m --  1 (0)  m ~ 0  r n =  1 

Equation (10) is essentially equivalent to a classical identity (derived along 
other lines in, e.g., Ref. 12, Vol. I, Section XI, 1). The announced lower 
bound for (no)  is given in the next variation. 

V A R I A T I O N  Vl 

For a stationary 0-1 process with P(O ~) = 0  

( n o )  >~j-- � 89  1) q (11) 

where j is the largest integer ~< q-1. The equality sign holds iff 

P ( l O J - l l ) = ( j + l ) q - 1 ,  P ( l O J l ) = l - j q  

P(10ml) = 0 for m # j - - l , j  

To prove this, observe that 

p(o  m) = p(o  m - 1) _ p(o  m-  , 1 ) >>. P(O m -1 ) _ p(1 ) 

and hence, by iteration, p(om))1-mq. Therefore, by Eq. (10), 

M M 

(no)>-" ~ p(om) ~ E ( 1 - m q )  (12) 
m - - I  m = l  

for any M. If j ~< q i < j + 1, the terms in the second sum are nonnegative 
iff m<~j, so that the largest lower bound for (no )  of the type (12) is 
obtained by choosing M = j, which yields (11). 
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For the equality sign to hold, it is necessary and sufficient that 
p (0m)=0  for m > j ,  P(0")  = 1 --mq for rn<~j. Since 

P ( l O m l )  __- p ( o m l )  __ p(om+ 11 ) = p(o  m) _ 2 P ( O m  + 1) + p(om + 2) 

this condition on the P(O m) is equivalent to the one stated in the variation, 
which is formulated in terms of the P(10ml). The latter is more transparent: 
it says that a 1 can only be followed by 0 J - l l  or by 0q ,  with the 
prescribed probabilities. It is evident that a measure satisfying this 
requirement exists. 

Note that inequality (11) is stronger than (8) because ( 1 - j q )  
[1 - ( j +  1) q] ~<0; it coincides with (8) iffq---j  1. Note also that the lower 
bound given by (11) is piecewise linear and continuous in q. 

The inequality (11) can be generalized to one in terms of the 
probabilities of sequences of length ~< l, l ~> 1: 

V A R I A T I O N  V I I  

For a stationary 0~1 process with P ( 0 ~ ) = 0  and for l~> 1 

(no)>> ` ~ p(Om)_ p(0 ~ 1)+ J 1 p(0t ) (13) 
r r t= l  

where j is the largest integer ~< P(O ~ 1)/p(0 ~ -  11). Equality obtains iff 

P(IOJ+'-21)=jP(O'-I)  - ( j+  1) P(0') 

P(1W+'- l l )=jP(O' )  - ( j -  1) P(O '-1) 

P(10ml) = 0 for l - l < ~ m < ~ j + l - 3  and m>~j+l  

The proof is a generalization of that of the previous variation. From 
p(om)>~P(O m-l)  -P(O ~ 11), valid for l <~l<~m, it follows by iteration that 

p(o m) >~ p(O t- 1) _ (m - l + 1 ) P(O t- 11 ) 

and, hence, 
l - -1  M 

<,o> 1> Z P(0m) + 
m = l  m--1 

[ P ( O l - 1 ) - ( m - l + l ) P ( O ~ - ~ l ) ]  (14) 

for any M. If j~< P(0 l 1) /p(0l -11)<j+ 1, the terms in brackets are non- 
negative iff m ~ j +  l - 1 ,  so that the largest lower bound for (no)  of the 
type (14) is obtained by choosing M = j +  l - 1 ,  which yields (13). 

The derivation of the condition for equality is analogous to the one 
given in the proof of the previous variation. 
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The lower bound for (no)  given in (13) [which reduces to (11) 
for l =  1] is nondecreasing in l, since the lower bound for P(O m) is non- 
decreasing in l. Indeed, subtracting the bounds for l +  1 and for l gives, 
after a little algebra, 

EP(O * ) - ( m - l ) P ( O q ) ] - [ P ( O  ' - x ) - ( m - l + l ) P ( O '  *1)] 

= ( m -  l) e ( l O ' -  11) >1 o 

The lower bound at "level l" represents the lowest value that (no)  can 
take if P is allowed to vary in the set of measures with fixed values of the 
/-point probabilities P(xoxl""xl_~). This makes the monotonicity in I of 
the bound even obvious. 

Identity (10) guarantees that the bounds converge to the exact value 
of (no)  as I+ oe. 

The question of whether there is not only a lower, but also an upper 
bound for (no)  within the set of measures with fixed values of the 
P(xoX~"'xt-1) for given I must be answered in the negative: at each level l 
one can construct measures with arbitrarily large (even infinite) values of 
(no).  The reason is that fixing P(O m) for 1 <~m~l does not give sufficient 
information about the way in which P(0 m) behaves for m > L In particular, 
it does not exclude that ~],~ P(O m) diverges; examples where (no) = oc are 
easily constructed. 

For more restricted classes of 0-1 processes, howe.ver, upper bounds at 
a given level do exist. For 1-dependent processes, e.g. [characterized by the 
property P(yOy') + P(yly') = P(y) P(y') for any y and y ' ]  an upper bound 
is readily found. From P(yOy') <~ P(y) P(y') with y = 0 m, y' = 0 one derives 
by iteration p(02"-I)~<P(0) s, P(02s)~<P(0) ~ for s>~l, and hence, by 
Eq. (10), 

(no) ~ 2P(O)/P(1) = 2(1 -- q) q-~ 

A more detailed analysis shows, however, that for all q there is a sharper 
upper bound, which can be attained for q <~ �89 

Let us now consider the mean recurrence time (n~)  again. The 
analogue for (n~) of the identity (10) is given in the following variation: 

V A R I A T I O N  VIII  

For a stationary 0-1 process with P(O ~) = 0  

(nl)=l+P(O)+ ~ p(omlo ") 
m,n ~ 1 

(15) 
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The identity holds both if the sum on the right-hand side is finite and if it is 
infinite. 

The proof is again based on (v), this time with y- -0ml ,  r =  1: 

@ 1 )  = P ( 1 ) ( n l [ X o =  1> + P ( O ) ( n l [ X o = O )  

: 1 + ~ ~ nP(Omlon-tl) 
m = l n = l  

=1+ ~ ~ [p(omlon)-p(omlo~ 
m - - l n = O  

: 1 + ~ p (o ml )+  ~ p(omlo n) 
m =  I re ,n= l 

from which Eq. (15) follows because ~2m~=1 P(0ml)=  P(0). 
The next, somewhat baroque, variation constitutes a sharpening of the 

inequality (9) for (n~)  in terms of the probabilities of sequences of length 
~</. 

V A R I A T I O N  IX 

For a stationary 0-1 process with P(0 ~ = 0 and for l~> i 

(n I ) >/1 + P(O) + ~ P(O"IO") 
m , ~  >J [ 

m + n < ~ l  1 

+ m a x  Z (a, . , . ; , -a,~-~, .-1;l-1) (16) 
J = l l  ( m , n ) ~ J  

where 
I t := {(m, n): l<~m, n<~l-  1; l<~m+n<<.2 l -2}  

am,n;Z := 2 P(Om-ilOn-j) 
i,j>~O 

i + j = m + n + l  l 

The derivation starts from the fact that for m, n ~> 1 

P(OmlO ") = P(O m- 110") - P(IO m - *10" - 1) + P(lOm- 110 . - t l)  

>~ p(om- 110-) - P(lOm-- 110 "-1 ) 

=p(om-*lOn)+ p(O'~lOn-,)__p(o m ,10 n-*) 

and hence, by iteration, for max{m, n} + 1 <~l<~m +n 

m n P(0 t0 )~-am,ml--am_l,n_l;t_ 1 (17) 
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with am.n; l as defined above. Choosing a "level" l and J c  It, applying (17) 
to all terms in (15) with (m, n)~J,  omitting all other terms in (15) with 
m + n  >/l, and maximizing with respect to J yields (16). 

In contrast with the situation encountered in the proof of Variation 
VII, the condition for the right-hand side of (17) to be nonnegative is not 
of a form that admits an immediate answer to the question of how to 
characterize the pairs (m, n) for which this lower bound to P(0'~10 n) should 
be included in (16) in order to obtain the best lower bound to ( n l )  for a 
given level l and given /-point probabilities. Therefore, the problem of 
finding the maximizing J in (16) will not be addressed. 

For ( n l ) ,  as for (no) ,  there is no upper bound within the set of 
measures with fixed values of the P(xox~ '"xz  1) for given l; the only 
general upper bound known is the one given in Eq. (7). 

The next variation deals with the variance of n l under the condition 
Xo=l. 

V A R I A T I O N  X 

For a stationary 0-1 process with P(0 ~) = 0 

Var(nl lXo= 1)~>a(1-a )  (18) 

where a is the nonintegral part of q-1. 
Equation (18) follows simply from (1), (5), and (11). The necessary 

and sufficient condition for equality is the same as in Variation VI. 
Similarly, a lower bound for V a r ( n l l X 0 = l )  at an arbitrary level l is 
obtained from (13). There is, of course, also an analogue of the identity 
(lO): 

V A R I A T I O N  Xl 

For a stationary 0-1 process with P(0 ~ = 0  

V a r ( n l l X o = l ) =  q 1 - q - Z + 2 q  1 ~ P(O m) (19) 
m - - 1  

This follows directly from (1), (5), and (10). Equation (19) was first 
derived by Blum and Rosenblatt, (2) who also gave a formal expression for 
(n~lX o = 1 ) for general r ~> 2 (cf. also Ref. 5). 

The bounds on (no) ,  ( n l ) ,  and Vat(n11Xo = 1) derived so far can, of 
course, be sharpened if more information on the 0-1 process is available, 
e.g., if the process is known to be a Markov process, a renewal process, or 
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a 1-dependent process. The next variation gives an example of such sharper 
bounds. It deals with processes of which the probability measure i s log con- 
vex with respect to the ordering of 0-1 sequences defined as follows: for 
two 0-1 sequences y, y '  of the same length we put y > y' iff one or more 
entries of y are larger than the corresponding entries of y '  and the other 
entries (if any) o fy  a n d y '  are equal (e.g., 1 >0,  11 >01 >00, 11 > 10 >00). 
The measure P is called log convex if P ( y  v y ' )  P ( y  ix y ' )  >1 P(y)  P(y ' )  for 
all y, y'  of the same length, where y v y' (y A y') is the least upper bound 
(greatest lower bound) of y and y'. 

V A R I A T I O N  X I I  

For a stationary 0-1 process with a log convex probability measure 
and P(O ~) = 0 

(no)>~q 1 - 1  (20) 

@1) >~q-1 (21) 

In both equations the equality sign holds iff the process is Bernoulli [i.e., iff 
P(xox1"" . x , ) =  P(xo) P ( x l ) ' "  P(x , )  for all n]. 

To prove (20) and (21), observe that the definition of log convexity 
implies 

P(OyO) P(y )  -- e(Oy) e(yO) 

= e(OyO)[P(OyO) + e(Oyl ) + P(ly0)  + P ( ly l  )] 

-- [P(OyO) + P(Oyl)][P(OyO) + P(lyO)] 

= P(OyO) P( ly l )  - P(Oyl) P(lyO) ~> 0 

Choosing y = O  m 2 (m~>2) and y = O  m 110" I (m,n>~l),  one finds, 
respectively, 

p ( o m ) ~ p ( o  m 1)2/p(om 2) 

p(omlo .) ~ p(omlo . - 1) p(o m - l lOn)/p(om -llOn l) 

Iteration yields 
P(O m) >~ P(O m-1 ) P(O) 

~> - -  ~ P ( O ) "  

p ( o m l o n ) ~ p ( O m 1 0  n 1) p(10n) /P(10 n 1) 

" ~ p ( o m l )  P( IO ' ) /P (1 )  
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which, inserted into (10) and (15), yields (20) and (21). The condition for 
equality follows trivially. 

Equation (21) can also be derived in another way, namely by applying 
the F K G  inequality, (6) generalized to countable sets. Consider the unique 
extension of the process X to a process on 2~, J ? : = ( X t ) ~ ,  and define 
rio := - m a x { t  <0:  Xt = 1} (not to be confused with no, which equals zero 
if Xo = 1), rik := nk (k ~> 1). Then, in an obvious notation, 

(nln21Xo = l>x  = (h ,r i~lXo= l>x  = <rioril 1Ko = 1>~ 

by the stationarity of the process (rik)k~z under the condition X0 = 1, which 
is easily established. Since both rio and ri~ are nonincreasing with respect to 
the ordering of sequences, they are positively correlated. Hence, 

( n l n 2 l X o = l > > ~ < n l l X o = l > < n 2 l X o = l > =  q 2 

from which (21) follows in virtue of (6). 
Statements of a different kind about the recurrence times nk can be 

made if the process X is not only stationary, but ergodic, i.e., if P is not a 
convex combination 2 P l + ( 1 - 2 ) P 2 ,  with 0 < 2 < 1 ,  of two other 
stationary probability distributions. They are contained in the next 
variation (the first part of which is mentioned in Ref. 7). 

V A R I A T I O N  XlII  

For an ergodic 0-1 process 

k 

lim k -1 ~ n j = q  -1 
k ~ c ( )  j = l  

k 

lim k 1 ~ (nj> =q 
k ~ c o  j = l  

with probability ! (22) 

if <no>< ~ (23) 

Equation (22) is derived by applying Birkhoff's ergodic theorem to the 
random variable X0: 

l i m ( t + l )  -1 ~ X n = ( X o ) = q  a.s. 
t ~ o o  

n = 0  

Taking the subsequence formed by the time averages up to those t-values 
for which X ,=  1, i.e., the times t =  Tk, k~> 1 (which are defined with 
probability 1), one obtains 

k 
lira = q a.s. 

k ~ co " ~ k  

which is equivalent to (22) because Z~= l n j=  T~+~-  T~. 
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By Eq. (7), all <nk> are uniformly bounded if ( n o ) <  oo. Equation 
(23) then follows from (22) by the dominated convergence theorem. 

Equation (23) may be said to express the asymptotic behavior of (nk> 
in the limit k ~  0% not in the strict sense, but in the weaker sense of 
Ces~tro. A much stronger statement, namely on the asymptotic behavior in 
the strict sense of the probability distribution for nk, can be made if P is 
not only ergodic, but if its extension P describing the process J (=  (X,)t~ z is 
an ergodic (=extremal) Gibbs state. 

V A R I A T I O N  X I V  

For a stationary 0-I process with a probability measure P of which 
the extension P is an ergodic Gibbs state 

lira P(nk>n)=P(n~>nlXo=l)= q JP(no=n) forall n>~0 (24) 
k ~ o o  

lim <nk>=q -1 if < n o > < ~  (25) 
k ~ o o  

Equation (24) is a corollary of a theorem on random walks on a 
stochastically black and white colored lattice that has quite recently been 
established by den Hollander. (8) This theorem gives conditions under 
which, loosely speaking, the arrangement of black and white points "per- 
ceived" by the walker in an arbitrary finite region of fixed form around him 
at the time of his kth visit to a black point will in the limit k ~ ~ become 
asymptotically independent of the color arrangement in any finite 
neighborhood of his starting point. For a precise formulation and the proof 
of the theorem see den Hollander's paper. The application to 0-1 processes 
is obtained by choosing a one-dimensional lattice and a deterministic ran- 
dom walk [p(1) = 1]. Equation (25) follows from (24) (see Ref. 9, p. 192). 

The final two variations, the first of which is due to Kac himself (see 
also Ref. 10), are in a different key. They refer to a dynamical system 
((2, f6',#, T), i.e., a probability space (s M,#)  together with an 
automorphism T of this space (i.e., an invertible measure-preserving map- 
ping of (2 onto itself). 

V A R I A T I O N  X V  (1) 

Let (s ~, #, T) be a dynamical system, A cs a set of positive 
measure, and, for coeA, nlA(~o)=min{t>~ 1: T'~oeA} the Poincar6 cycle 
of c~. If T is ergodic, then 

<nlAjA )._SAd#n]A(~ ) 1 (26) 
" -  f d# " 
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The proof is essentially Kac's. Associate with (f2, M, #, T) a 0-1 
X o~ process ( ~)t=o by putting Xt(co)= 1 iff T~o ~ A. Since T is measure-preser- 

ving, the process is stationary. Further, q = P(1)=/~(A) and P(0 ~ = #(B), 
where 

B---BA := {~ ~(2: TtooCA for all t~>O} 

To show that # ( B ) =  0, consider the sets 

T "B =  {~o: T~coCA for all t>~n} 

which form a nondecreasing sequence with #(T-"B)=t.t(B). Let C := 
Onto T-nB. Clearly, TC = C and hence, by the ergodicity of T,/~(C) = 0 or 
1. Now 

#(C) =/~(B) ~</~(f2\A) = 1 - #(A) < 1 

Hence # ( B ) =  0. Application of (1) gives (26). 

V A R I A T I O N  XVI 

Let (f2,~,~t, T) be a dynamical system, with T an arbitrary 
automorphism. Then, with A, BA, and nlA as defined before, 

(n,A I A )  = [1 - #(BA)]/p(A) (27) 

Equation (27) is a direct application of Variation I. The translation of the 
other variations to dynamical systems is equally straightforward. 

CODA 

For an arbitrary stationary 0--1 process [i.e., one where P(0 ~) need 
not be zero] the inequalities and identities appearing in Variations II-XII 
remain valid if the probability measure P ( ' )  is replaced by the conditional 
probability P(. IX C0  ~) and the unconditional expectations (nk) ,  k >/0, 
by (n~] X:~ 0 ~ ) .  

This statement is easily verified by inspection of the proofs of the 
variations. Note that 

e(o m ) - -  P(O o~ ) 
p ( o m l x ~ o ~ ) =  

1 - e ( o  ~ )  

P(Y) 
P ( y I X ~ O  ~ ) -  if y contains a 1 

1 - -  P ( O  ~ ) 
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so that q is to be replaced by q / [ 1 - P ( O ~ ) ] .  The factor 1 - P ( O  ~176 is, of 
course, the probabili ty that at least one 1 will appear; if this happens, then 
with probabili ty one infinitely many  l 's will appear, so that all nk are 
proper random variables. Variation I contains another example of a 
generalization to arbitrary stationary P. 

In connection with the question of whether or not P (O~)=O,  the 
following remark may be in place. It is clear that a sufficient (though not 
necessary) condition for P(O ~)  = 0 is that the process X be ergodic. Indeed, 
the event X =  0 ~ is invariant under the t ime shif t  Y ,  defined by (~ = 
J(t +1, and for an ergodic process all sets of events that are invariant under 
Y have probability zero or one; the possibility P(O ~)  = 1 is excluded by 
the assumption q > O. 

An example of an ergodic 0-1 process is found in the class of processes 
the analysis of which gave rise to the work reported on above and which 
has been alluded to already several times. Let there be given an infinite 
d-dimensional lattice L, a translation-invariant probabili ty distribution on 
the set of all black and white colorings of the sites of L, and a random walk 
on L starting at the origin at time zero and moving independently of the 

X ~ coloring. Then the process ( At=0, defined by X , = O  (1) if the lattice site 
occupied by the walker at time t is white (black), is a stationary 0-1 
process. It can be shown (a hint of a proof  is given in Ref. 11) that X is 
ergodic if the coloring probabili ty distribution is ergodic with respect to 
lattice translations ("extremal translation invariant" in the terminology of 
Ref. 11) and the random walk aperiodic ("spanning"). 
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